
Generating Responses and Explanations from RDF/XML and DAML+OIL

Graham Wilcock and Kristiina Jokinen
University of Helsinki

00014 Helsinki, Finland
graham.wilcock@helsinki.fi

kristiina.jokinen@helsinki.fi

Abstract

The paper describes on-going work on generating
dialogue responses on two levels: first, generation
of factual responses from RDF/XML informa-
tion; second, generation of meta-level explana-
tions of an ontology’s structure from DAML+OIL
domain ontologies. We also discuss ways to use
an ontology to improve a current dialogue sys-
tem’s responses, for example by identifying mis-
conceptions.

1 Introduction
1.1 Practical Dialogue Systems
The emphasis in designing practical spoken dialogue systems
has been on designing suitable system prompts that will suc-
cessfully elicit required user input to answer the system’s
questions. For example using VoiceXML[VoiceXML Fo-
rum, 2000], the dialogue designer designs the whole course
of the dialogue taking into account the application task’s re-
quirements: the VoiceXML language is used to specify what
the system will say, what the user is allowed to say, and how
to proceed from one dialogue state to another. The whole
dialogue is designed to best complete the task and this under-
lying assumption affects the system responses. The responses
are of two types: either the system provides the user with an
answer or the system asks clarification questions to which the
user is requested to reply. The assumption that the dialogue
is designed in terms of factual information exchange results
in the simplified functionality of dialogue systems: the sys-
tem’s answer to the original user request is a one-shot answer
whereby all the information is given to the user in one go
[Moore, 1995], and the system must take care to control the
user’s responses in order to guide her through the task space.

However, we argue that spoken dialogue systems require
an approach, which concerns natural dialogues in the sense of
allowing the user to express requests in a natural language and
receive responses that exhibit cooperation and understand-
ing of the user’s intentions. It is thus necessary to deliber-
ate on appropriate presentation and suitable ways in which
the pieces of information will be given to the user. Although
the aim need not be to mimic human-human dialogues, it is
still useful to be aware of those interaction patterns that make

human-human dialogues effective, friendly and enjoyable,
compared to most present-day human-computer dialogues. In
this way, it is possible to progress towards human-centred and
activity-based design, in which the user and her needs, capa-
bilities and desires are put in the foreground. On the other
hand, it is important that the system responses are clear and
unambiguous, eliciting the user’s trust in the system. It is not
generally acceptable for the system to show the same kind of
uncertainty and fluffy presentation as humans: this is confus-
ing because the user is not used to such ’human-like’ inter-
action with a machine, and moreover, the system would not
give an impression of a reliable service provider, an authority
that speaks with a clear language.

1.2 Semantic Web and Ontologies
Presentation techniques are also relevant when considering
the growing number of web-based applications where the user
can interactively guide the search for information. Question
answering systems that combine text mining with reasoning
techniques also refer to the Gricean maxims that have been
the basis for cooperative dialogue systems[Harabagiuet al.,
2000]. Especially the need has been argued for adaptive sys-
tems and completely new usability methods.

In dialogue systems, the world model has traditionally
been manually built on the basis of what is important for
the application, and the reasoning that the system is capa-
ble of doing is limited to simple inferences in the applica-
tion domain. This of course constrains the system’s porta-
bility to other domains and also hinders the system’s wide
coverage. Thus there is a need for extending the system’s
knowledge so that domain ontology and information from
real-size databases could be maximally exploited in the in-
teraction management.

The distinction between an ontology and a database is not
always straightforward. In general, a database holds details
of specific entities, and an ontology holds meta-level infor-
mation about different types of entities. When ontologies also
hold details of specificinstancesof the members of a class,
this distinction becomes blurred. However, we will structure
the paper according to this distinction. In Section 2 we de-
scribe XML-based spoken dialogue response generation from
RDF/XML data which includes information about specific in-
stances. This has been implemented in a research prototype.
In Section 3 we discuss generation of meta-level explanations



of the structure of the ontology itself from DAML+OIL rep-
resentations. This is on-going work. We then discuss in Sec-
tion 4 how ontologies could be exploited in interactive dia-
logue systems, for example for identifying user misconcep-
tions. This is also on-going work.

2 Generating responses from RDF
2.1 XML-based Generation
XML-based techniques for natural language generation are
described by[Wilcock, 2001], based on practical experience
in developing an XML-based generation component for a
spoken dialogue system[Jokinen and Wilcock, 2001].

The basic approach in this form of XML-based generation
is to construct a pipeline of XSLT transformations in which
the transformations correspond to the processing stages in
the well-known natural language generation pipeline archi-
tecture. At the start of the pipeline, a form of template-based
generation is used to create a response plan tree whose leaves
are domain concept messages. The response plan tree is trans-
formed during the microplanning stages into a response spec-
ification tree whose leaves are linguistic phrase specifications.
The realization stage produces a response marked up in JSML
(Java Speech Markup Language) as output from the pipeline.
This is passed to the speech synthesizer.

This approach has already been documented, so we will
not repeat further details here. In addition to[Wilcock, 2001],
there is a tutorial with step-by-step examples of the vari-
ous XML processing stages[Wilcock, 2002], and a software
demo[Wilcock, 2003].

The use of this generation model for spoken dialogues is
discussed by[Jokinen and Wilcock, 2001] and[Wilcock and
Jokinen, 2003]. In an interactive dialogue system the starting
point for the generation pipeline is specified by the dialogue
manager component in the form of anagenda, in which a
set of domain concepts are given to the generator component.
The information status of the concepts is tagged by the dia-
logue manager as old information (Topic) or as new informa-
tion (NewInfo)[Jokinenet al., 1998]. This status can be used
in the referring expressions stage of the generator.

2.2 Generating from RDF/XML
As RDF can be directly encoded in XML, the XML-based
generation approach described in Section 2.1 can readily be
extended to generate from RDF/XML representations.

The prototype system which processes RDF representa-
tions and extracts the required content is implemented in Java
using Jena[HP Labs, 2003], a Java API for manipulating
RDF models. Jena includes an integrated RDF parser (ARP),
an integrated RDF query language (RDQL), support for stor-
ing DAML+OIL ontologies in an RDF model, and support
for persistent storage of RDF models in relational databases.

RDF descriptions like the example shown in Figure 1 can
be extracted from relational databases or other persistent RDF
storage systems using RDF query languages such as Jena’s
RDQL. This simple example is taken from the Jena tutorial
[HP Labs, 2003], where it is in fact the result of combining
two smaller RDF descriptions.

<rdf:RDF
xmlns:rdf=’http://www.w3.org/

1999/02/22-rdf-syntax-ns#’
xmlns:vcard=’http://www.w3.org/

2001/vcard-rdf/3.0#’
>

<rdf:Description
rdf:about=’http://somewhere/JohnSmith/’>

<vcard:FN>John Smith</vcard:FN>
<vcard:N rdf:nodeID=’A0’/>
<vcard:EMAIL rdf:nodeID=’A1’/>

</rdf:Description>
<rdf:Description rdf:nodeID=’A1’>

<rdf:value>John@somewhere.com</rdf:value>
<rdf:type rdf:resource=’http://www.w3.org/

2001/vcard-rdf/3.0#internet’/>
</rdf:Description>
<rdf:Description rdf:nodeID=’A0’>

<vcard:Family>Smith</vcard:Family>
<vcard:Given>John</vcard:Given>

</rdf:Description>
</rdf:RDF>

Figure 1: Example RDF description from Jena tutorial

Note that the example description is about a specific per-
son instance (John Smith), not about the general class of per-
sons. Note also that the example uses the RDF encoding for
vCard (visiting card) objects representing personal informa-
tion [World Wide Web Consortium, 2001].

If the generator were limited to the information given ex-
plicitly in the RDF repesentation, without knowledge of the
vCard standard, it would not be able to generate a natural-
sounding response which is easy to understand. (This might
also be true of a human, if asked to explain the example with-
out knowledge of vCard). The generated response might be
something like (1).

(1) User:What do you know about John Smith?
System:This is a description of
’http://somewhere/JohnSmith/’. The description
includes 3 items: ’vcard:FN’, ’vcard:N’ and
’vcard:EMAIL’.
The value of ’vcard:FN’ is ’John Smith’.
The description of ’vcard:N’ includes 2 items:
’vcard:Family’ and ’vcard:Given’. The value of
’vcard:Family’ is ’Smith’. The value of ’vcard:Given’
is ’John’.
The description of ’vcard:EMAIL’ includes a value and
a type. The value is ’John@somewhere.com’. The type
is ’http://www.w3.org/2001/vcard-rdf/3.0#internet’.

2.3 Exploiting standards
In this case, the generator can take advantage of the fact that
a predefined standard is used – the vCard standard for per-
sonal information. The generator can use predefined XSLT
response plan templates for vCard information. The approach



to domain-specific text plan creation using predefined XSLT
templates is described by[Wilcock, 2001]. Specific values
from the RDF representation are copied into the appropriate
slots in the response plan template. Slots for which there is
no information are simply left empty and will not be visible
in the output.

Using the vCard information, the text planning stages of
the generator can create a much better response plan tree
equivalent to (2).

(2) User:What do you know about John Smith?
System:This is a description of John Smith identified
by ’http://somewhere/JohnSmith/’. John Smith’s given
name is ’John’. John Smith’s family name is ’Smith’.
John Smith’s email address is
’John@somewhere.com’. John Smith’s email address
is type ’internet’.

Of course, the purpose of a natural language generation
pipeline is to produce something more natural than this. By
generating suitable referring expressions, the microplanning
stages of the generator convert the text plan tree into a text
specification tree which is equivalent to (3).

(3) User:What do you know about John Smith?
System:This is a description of John Smith identified
by ’http://somewhere/JohnSmith/’. His given name is
’John’. His family name is ’Smith’. His email address
is ’John@somewhere.com’. It is ’internet’ type.

Note that one reason the summary in (3) seems more natu-
ral is that the generator has assumed that John Smith is male.
By also performing sentence aggregation, the microplanning
stages of the generator produce a text specification equivalent
to (4).

(4) User:What do you know about John Smith?
System:This is a description of John Smith identified
by ’http://somewhere/JohnSmith/’. His given name is
’John’ and his family name is ’Smith’. His email
address, which is ’internet’ type, is
’John@somewhere.com’.

The actual output is marked up in JSML, Java Speech
Markup Language[Sun Microsystems, 1999], for the speech
synthesizer.

FreeTTS[Sun Microsystems, 2002] is a speech synthe-
sizer implemented entirely in Java. Because it is Java-based
FreeTTS can be embedded in Java servlets, and as JSML is
XML-based the XSLT pipelines can easily produce JSML
output. However, the current version 1.1.1 of FreeTTS has
some restrictions: JSML markup is accepted but not actually
applied to the speech output, and there are only English and
MBROLA voices.

3 Generating explanations from ontologies
3.1 Shallow generation and ontologies
The XML-based generation approach described in Section 2
follows the strategy ofshallow generation[Busemann and
Horacek, 1998]. One of the key ideas in shallow generation
is to deliberately build domain-specific generators, and not to
attempt to provide general solutions.

Naturally the shallow generation approach is compatible
with using a domain-specific ontology, but it seems at first
sight to be incompatible with the idea of using more general
ontologies. One of the issues is how to port a shallow gen-
erator from one domain to another, and whether ontologies
can offer any help. Is there any principled way to move a
generator from one domain-specific ontology to another for
a different domain, or to extend the domain by working with
merged ontologies? It is precisely these flexible possibilities
which make ontologies potentially attractive.

Another key idea of shallow generation is to build gener-
ators which are task-specific. Typically a shallow generator
is both domain-specific and task-specific, because the task is
closely tied to the domain. In the case of generating expla-
nations from ontologies, the task is specific: to generate an
explanation.

Surprisingly, the domain is also specific: it is the domain
of ontologies. Although ontologies are about many differ-
ent domains at the object level, they are all ontologies at the
meta-level. So a domain-specific and task-specific shallow
generator (for the domain of ontologies and the task of expla-
nation) is a feasible objective.

3.2 Previous work on generation from ontologies
We will briefly look at some previous work on generation
from ontologies. The basic motivation for generating natural
language explanations from ontologies is that the formalisms
used to encode ontologies are difficult to understand.

Our experience shows that domain experts
and human final users do not understand formal
ontologies codified in such languages even if such
languages have a browser and a graphic user in-
terface to display the ontology content.[Aguado
et al., 1998]

Although the languages referred to are older formalisms
such as Ontolingua, CycL and LOOM, we cannot assume that
RDF, DAML+OIL or OWL are any easier to understand.

[Aguadoet al., 1998] describe a system which translates
the contents of a domain ontology, formalized in Ontolingua,
into natural language. As part of the mapping from domain
concepts to a linguistic representation they use the General-
ized Upper Model (GUM) based on the earlier Penman Upper
Model [Batemanet al., 1990]. They describe GUM as alin-
guistic ontology. Surface realization is done with KPML.

Describing the text planning stage,[Aguadoet al., 1998]
say that their rhetorical schemas represent standard patterns
of scientific discourse. They identified a number of stereotyp-
ical paragraph templates, including definitions, comparisons,
examples, and classifications. This is an important point. If a
small number of explanation schemas are sufficient to gener-
ate explanations from ontologies, then the shallow generation
approach described in Section 3.1 can be employed.

[Fröhlich and van de Riet, 1998] describe work on domain
independent tools for generation based on “a sophisticated
representation scheme using different ontologies to represent
the domain knowledge for different tasks of the generation
process.” Like[Aguadoet al., 1998], they have a domain-
specific layer at the top and a domain-independent layer based



on the Penman Upper Model at the bottom, with KPML for
surface realization, but[Fröhlich and van de Riet, 1998] also
have a middle layer based on MOOSE[Stede, 1996].

These examples of earlier pioneering work naturally used
software tools such as LISP and LOOM and adoptedde facto
standards such as the Penman Upper Model and Sentence
Plan Language. Of course we now wish to use cross-platform
software such as Java, and follow open W3C standards such
as XML, RDF and OWL.

3.3 Generating from DAML+OIL
We now show how the RDF/XML-based generation approach
described in Section 2 can be extended to generate from a
DAML+OIL ontology. The component which processes the
DAML+OIL representation and extracts the required content
is implemented using Jena.

Jena provides Java methods to read an ontology which is
represented in DAML+OIL form and load it as a Jena model.
There are also Jena methods to list all the ontology classes
and to list all the properties. As a first step, this provides a
starting point for verbalising the ontology contents, but raw
lists of classes and properties are very difficult to understand.
In order to generate something which is anexplanationof the
ontology, the classes and properties need to be organised into
meaningful groups.

As a second step, the properties can be grouped within the
classes they apply to. We illustrate this using the DAML+OIL
ontology for vCards given in the Jena tutorial. In this case we
could again use predefined knowledge about vCards as we
did in Section 2, but the important question is how to generate
an explanation about an ontology using only the information
available in the ontology itself.

Figure 2 shows a fragment of the list of DAML classes
and properties extracted from the vCard ontology in the Jena
tutorial, with properties grouped within classes. From such a
partially grouped list it is possible to generate some kind of
partially organised explanation, as shown in (5).

(5) User:What kind of information is in vCards?
System:The vCard ontology has 28 classes: car,
TELTYPES, pager, work, ADRTYPES,
NPROPERTIES, ADRPROPERTIES, . . .
The NPROPERTIES class has 5 properties: Given,
Suffix, Prefix, Family, Other.
The ADRPROPERTIES class has 7 properties: Pcode,
Country, Region, Pobox, Extadd, Street, Locality.

Some parts of the explanation in (5) may be useful, such
as the short lists of properties for the classes NPROPERTIES
and ADRPROPERTIES. Other parts are still very difficult to
understand, such as the list of 28 classes which includes both
superclasses (TELTYPES) and subclasses (car, pager).

As a third step, we can do more programming to find all
the subclasses of each class. Then we can produce a better
explanation, in which the concepts are grouped meaningfully.
A fragment of such an explanation is shown in (6).

(6) System:The TELTYPES class has 14 subclasses: car,
pager, video, voice, work, modem, fax, home, . . .

<DAMLClass http://www.w3.org/2001/vcard-rdf/
3.0#car>
<DAMLClass http://www.w3.org/2001/vcard-rdf/
3.0#TELTYPES>
<DAMLClass http://www.w3.org/2001/vcard-rdf/
3.0#pager>
<DAMLClass http://www.w3.org/2001/vcard-rdf/
3.0#work>
<DAMLClass http://www.w3.org/2001/vcard-rdf/
3.0#ADRTYPES>
<DAMLClass http://www.w3.org/2001/vcard-rdf/
3.0#NPROPERTIES>

<unique DAMLDatatypeProperty
http://www.w3.org/2001/vcard-rdf/3.0#Given>
<unique DAMLDatatypeProperty
http://www.w3.org/2001/vcard-rdf/3.0#Suffix>
<unique DAMLDatatypeProperty
http://www.w3.org/2001/vcard-rdf/3.0#Prefix>
<unique DAMLDatatypeProperty
http://www.w3.org/2001/vcard-rdf/3.0#Family>
<unique DAMLDatatypeProperty
http://www.w3.org/2001/vcard-rdf/3.0#Other>

<DAMLClass http://www.w3.org/2001/vcard-rdf/
3.0#ADRPROPERTIES>

<unique DAMLDatatypeProperty
http://www.w3.org/2001/vcard-rdf/3.0#Pcode>
<unique DAMLDatatypeProperty
http://www.w3.org/2001/vcard-rdf/3.0#Country>

Figure 2: DAML classes and properties

4 Using Ontologies in Dialogue Systems
4.1 The Interact System
The Interact system[Jokinenet al., 2002] is a dialogue sys-
tem that provides information on Helsinki area transporta-
tion. All the system components are implemented in Java
and XML. The generator design follows the XML-based ap-
proach described in Section 2.1.

On the most general level the system contains managers
which handle general coordination between the system com-
ponents and functional modules (such as the Input Manager,
the Dialogue Manager and the Presentation Manager), and
within each manager there are several agents which take care
of the various tasks typical for the functional domain. The
modules and agents communicate via a shared knowledge
base called Information Storage, where all the information
about the system state is kept.

The system exhibits a distributed dialogue management
style [Kerminen and Jokinen, 2003] whereby the dialogue
situations are handled by several dialogue agents dealing with
such subtasks as recognition of dialogue acts and topics. Sep-
arate task agents take care of application-related goals and the
system’s interaction with the database. The decision of the
system’s next act is determined by a special dialogue evalua-
tor agent.

The semantic content of the system response is a set of
concepts, each marked as either Topic or NewInfo, depending



on its status with respect to the discourse context. NewInfo
concepts encode the information that is asked or presented to
the user, while the Topic concepts encode information already
available in the context. The dialogue manager constructs
an Agenda, a list of concepts that is then transformed into a
natural language expression[Jokinen and Wilcock, 2001].

4.2 Using an Ontology
Even though the application domain is restricted, the system
can be extended towards a more natural interaction system
by providing it with an ontology that better matches the re-
quirements of the transportation domain. Currently the In-
teract system exploits a frame-based knowledge representa-
tion for the the domain knowledge, consisting of such con-
cepts as bus, departure-place, and arrival-time, and is capa-
ble of answering questions about connections between two
places, arrival and departure times, and arrival and departure
places. An example of the type of user enquiries and system
responses in the current system is shown in (7):

(7) User:When does bus number 70 leave?
System:The next one leaves at 14:35

However, to be able to answer meta-questions likeAre
there any buses going from Arabia to Pasila?or Does the
night-bus to Herttoniemenranta go the same route as the bus
during the day?, the system needs more structured knowledge
about any unspecified connection between two places, about
night-busandbusboth being a means of transportation that
can be specified by a route but may be instantiated as two
different items with two different routes. This knowledge
can be provided by an ontology that specifies the concepts
needed. Also we need a reasoning mechanism that supports
the use of ontology, and an ontology representation language
like DAML+OIL that attempts to merge web description lan-
guages, description logics, and frame based reasoning.

4.3 Identifying Misconceptions
The current system has only a limited means of dealing with
misconceptions. For example, if the user refers to an out-of-
range route number the current response is (8):

(8) User:When does bus number 700 leave?
System:I can’t find number 700 in the database

There is an important distinction here between a route
number which is out-of-range and one which is in-range but
happens not to be in current use. The exact range of bus route
numbers is currently 11–98, but there are several numbers
within this range which are not currently allocated to any
route, and such numbers will not be found in the database.
By contrast, 700 is not a valid route number because routes
only have 2-digit numbers. An ontology should provide this
kind of meta-level information about the number of digits.

Given this evidence that the user has a misconception
about the possible range of route numbers, it is the dialogue
manager’s responsibility how to handle the misconception in
the overall dialogue context. One possibility is to provide
both a general clarification and a cooperative response based
on the specific user query, as in (9).

(9) User:When does bus number 700 leave?
System:There are no route numbers greater than 100.
Do you mean bus number 70?

Another example from the current system in which an on-
tology should be useful for identifying misconceptions, is the
meta-level knowledge that route numbers 1–10 are reserved
for trams, not buses. (Again, this does not imply that there
is an instance for every number in the range 1–10. In fact,
there is currently no tram number 5). The ontology should
facilitate the kind of response illustrated in (10):

(10) User:When does bus number 7 leave?
System:Routes 1 to 10 aretramroutes, notbusroutes.
Do you meantramnumber 7?

Identifying the misconception enables the response to be
generated with contrastive stress ontram andbus, in order to
draw the user’s attention to the possible misconception.

5 Conclusion
We have described on-going work on generating dialogue
responses on two levels: first, generation of factual re-
sponses from RDF/XML information; second, generation
of meta-level explanations of an ontology’s structure from
DAML+OIL domain ontologies. We also discussed ways to
use an ontology to improve a current dialogue system’s re-
sponses, for example by identifying misconceptions.

References
[Aguadoet al., 1998] G. Aguado, A. Bãnón, J. Bateman,

S. Bernardos, M. Fernández, A. Ǵomez-Ṕerez, E. Nieto,
A. Olalla, R. Plaza, and A. Śanchez. Ontogeneration:
Reusing domain and linguistic ontologies for Spanish text
generation. InProceedings of ECAI-98 Workshop on Ap-
plications of Ontologies and Problem-solving Methods,
pages 1–10, Brighton, 1998.

[Batemanet al., 1990] John Bateman, Robert Kasper, Jo-
hanna Moore, and Richard Whitney. A general organi-
zation of knowledge for natural language processing: the
PENMAN upper model. Technical report, USC/ISI, 1990.

[Busemann and Horacek, 1998] Stephan Busemann and
Helmut Horacek. A flexible shallow approach to text
generation. InProceedings of the Ninth International
Workshop on Natural Language Generation, pages
238–247, Niagara-on-the-Lake, Ontario, 1998.

[Fröhlich and van de Riet, 1998] Marcel Fr̈ohlich and Reind
van de Riet. Using multiple ontologies in a framework
for natural language generation. InProceedings of ECAI-
98 Workshop on Applications of Ontologies and Problem-
solving Methods, pages 67–77, Brighton, 1998.

[Harabagiuet al., 2000] Sanda Harabagiu, Marius Pasca,
and Steven Maiorano. Experiments with open-domain
textual question answering. InProceedings of the 18th
International Conference on Computational Linguistics
(COLING-2000), pages 292–298, Saarbruecken, 2000.

[HP Labs, 2003] HP Labs. Jena Semantic Web Toolkit.
http://www.hpl.hp.com/semweb/jena.htm, 2003.



[Jokinen and Wilcock, 2001] Kristiina Jokinen and Graham
Wilcock. Confidence-based adaptivity in response gener-
ation for a spoken dialogue system. InProceedings of the
2nd SIGdial Workshop on Discourse and Dialogue, pages
80–89, Aalborg, Denmark, 2001.

[Jokinenet al., 1998] Kristiina Jokinen, Hideki Tanaka, and
Akio Yokoo. Planning dialogue contributions with new
information. In Proceedings of the Ninth International
Workshop on Natural Language Generation, pages 158–
167, Niagara-on-the-Lake, Ontario, 1998.

[Jokinenet al., 2002] Kristiina Jokinen, Antti Kerminen,
Mauri Kaipainen, Tommi Jauhiainen, Graham Wilcock,
Markku Turunen, Jaakko Hakulinen, Jukka Kuusisto, and
Krista Lagus. Adaptive dialogue systems - Interaction with
Interact. InProceedings of the 3rd SIGdial Workshop on
Discourse and Dialogue, pages 64–73, Philadelphia, 2002.

[Kerminen and Jokinen, 2003] Antti Kerminen and Kristiina
Jokinen. Distributed dialogue management in a black-
board architecture. InProceedings of the EACL-2003
Workshop on Dialogue Systems: Interaction, adaptation
and dialogue management styles, pages 55–62, Budapest,
2003.

[Moore, 1995] Johanna Moore.Participating in Explanatory
Dialogues. MIT Press, 1995.

[Stede, 1996] Manfred Stede.Lexical Semantics and Knowl-
edge Representation in Multilingual Sentence Generation.
PhD thesis, University of Toronto, 1996.

[Sun Microsystems, 1999] Sun Microsystems. Java
Speech Markup Language Specification, version 0.6.
http://java.sun.com/products/java-media/speech/, 1999.

[Sun Microsystems, 2002] Sun Microsystems. FreeTTS: A
speech synthesizer written entirly in the Java programming
language. http://freetts.sourceforge.net/, 2002.

[VoiceXML Forum, 2000] VoiceXML Forum. Voice eX-
tensible Markup Language VoiceXML, Version 1.00.
http://www.voicexml.org/, 2000.

[Wilcock and Jokinen, 2003] Graham Wilcock and Kristiina
Jokinen. Generation models for spoken dialogues. In
Natural Language Generation in Spoken and Written Di-
alogue, Papers from the 2003 AAAI Spring Symposium,
pages 159–165, Stanford, 2003. American Association for
Artificial Intelligence.

[Wilcock, 2001] Graham Wilcock. Pipelines, templates and
transformations: XML for natural language generation. In
Proceedings of the 1st NLP and XML Workshop, pages 1–
8, Tokyo, 2001.

[Wilcock, 2002] Graham Wilcock. XML-based Natural Lan-
guage Generation. InTowards the Semantic Web and Web
Services: XML Finland 2002 Slide Presentations, pages
40–63, Helsinki, 2002.

[Wilcock, 2003] Graham Wilcock. Integrating Natural Lan-
guage Generation with XML Web Technology. InPro-
ceedings of the Demo Sessions of EACL-2003, pages 247–
250, Budapest, 2003.

[World Wide Web Consortium, 2001] World Wide Web
Consortium. Representing vCard Objects in RDF/XML.
http: //www.w3.org/TR/vcard-rdf, 2001.


