

--- Mobile Music Source Documentation: March 2012 ---

Mobile Music Source Documentation
SOPI Research Group. March 2012

Mobile Music Source Documentation

Coding Practice
Workbenches
Naming conventions for integration
Definitions
Comments
‘Source Management’

Sensor Module
Analysis Module
Adaptive System Module
State Interpretation Mapping Layer [SIMpL]

Information from Markov Chains
Interpretation of States
Sensor value routing

Synthesis Module
Module Public Send and Receive Documentation

Social/Gestural Analysis Module
Social/Gestural Analysis Module Details

Synthesizer Module
Synthesizer Module Module details

SIMpl Rescaling Messages
Kinect Management

1

 of 12

#h.72ssutzaw37j
#h.72ssutzaw37j
#h.72ssutzaw37j
#h.72ssutzaw37j
#h.72ssutzaw37j
#h.k51nr2tylhna
#h.k51nr2tylhna
#h.k51nr2tylhna
#h.k51nr2tylhna
#h.k51nr2tylhna

--- Mobile Music Source Documentation: March 2012 ---

Coding Practice

Workbenches
● each module should have a MWE (Minimum Working Example) Workbench, to

demonstrate and test functionality during integration and debugging.
● The workbench should allow debugging by manipulating the publicly available methods,

sends and receives mentioned in the API/documentation.

Naming conventions for integration
● module names should be ‘camelized’ e.g. ‘ThisNameIsCamelized’.
● publicly available ‘methods’, values and sends should have camelized, descriptive

identifiers. e.g. ‘thisMethodOutputsZeroWhenGivenOne’
● module folders names should end with the word `module’ and contain a Pd patch inside

with the same name for use in the masterControlPatch.
● documentation should include both the variable names, their ranges and a short

description of their use mentioning any cautionary usage issues.
● receivers for the master parameter file are prepended with ‘#’, are capatalized and take

the name of the destination module. e.g. ‘#SYNTHESIZER’

Definitions
● BOOL is considered to be ‘zero’ and ‘not zero’

Comments
● Comments should be used to clarify working logic withing patches where needed and

when the patch is not self documenting or a MWE is not sufficient to demonstrate full
functionality.

‘Source Management’
● module backups are placed in the ‘xbackups’ folder within each module folder and are

zipped and appended with the date of their creation e.g. ‘synthesizerModule010312.zip’

2

 of 12

--- Mobile Music Source Documentation: March 2012 ---

Sensor Module

Analysis Module

Adaptive System Module
This module uses rescaled probabilities to direct or adapt the state selection within a Markov
chain. The rescaling is occurs in relation to social parameters. But this can be mapped to any
sensor value that is normalised to the range 0-1(float).

Output is to #STATE.

Each chain sends a separate message in the following form:

<Markov chain Name(unique Symobl)> <Next State (int)>

Markov Chain state transition probabilities are

State Interpretation Mapping Layer [SIMpL]
What this does:

● Receives state information from the Markov Chains.
● Interprets the required action to take from the state information
● Outputs this information to the Synth Stuff layer.

Information from Markov Chains

Markov chains will send a message to SIMpL that contains the chain that the message came
from and the state value.
Message structure:

<Markov chain Name(unique Symobl)> <Next State (int)>

Interpretation of States
This uses the information on static and adaptive system state behaviour and updates the
synthesis parameters through out the system so that they correspond to the markov state. It is
also used to set static behaviour.

This retrieves and interprets messages in 2 forms. The first is for updating the parameter to a
constant value which is done by the following message:

<Markov chain Name(unique Symobl)> <Next State (int)> …

… <synth module (unique Symbol)> <synth parameter (symbol)> <value

(float)>

3

 of 12

--- Mobile Music Source Documentation: March 2012 ---

This message specifies the corresponding system state that this parameter change should
occur in. The synth module that is to be updated. The parameter that is to be updated and the
value it should be updated to.

The other form is to change the mapping of a sensor to the variable which is done with the
following message:

<Markov chain Name(unique Symobl)> <Next State (int)> …

 … <synth module (unique Symbol)> <synth parameter (symbol)> …

 … <minimum value (float)> <maximum value (float)> …

 … <sensor value to map (symbol)> <min value (float)> …

… <max value (float)> scaling <curve exponent (float or symbol dB)>

This message specifies the corresponding system state that this parameter change should
occur in. The synth module that is to be updated. The parameter that is to be updated the
minimum and maximum values for the parameter. The sensor value that should be mapped
to this parameter, the minimum and maximum values the sensor value can be. The scaling
exponent for the behaviour of the sensor mapping. 1 being linear and dB specifying decibel
scale.

Specifying Static Behaviour

Output
SIMpL outputs messages down #SYNTHESIZER in the format

<synth module (unique Symbol)> <synth parameter (symbol)> <value (float)>

Synthesis Module

4

 of 12

--- Mobile Music Source Documentation: March 2012 ---

Module Public Send and Receive Documentation

Social/Gestural Analysis Module
all messages are sent on the #ANALYSIS `send channel’.

EXACT VARIABLE NAME RANGE/UNIT

centroidXPosition 0-1f

centroidYPosition 0-1f

distanceBetween1and2 0-1f

distanceBetween1andCentroid 0-1f

distanceBetween2and3 0-1f

distanceBetween2andCentroid 0-1f

distanceBetween3and1 0-1f

distanceBetween3andCentroid 0-1f

everybodyIsAlive BOOL

averageDistanceToCentroid 0-1f

deltaIPod1 >0

deltaIPod2 >0

deltaIPod3 >0

crossCorrelationDIFFERENCE 0-1f

crossCorrelationSUM 0-1f

iPod1Roll

iPod2Roll

iPod3Roll

iPod1Pitch

5

 of 12

--- Mobile Music Source Documentation: March 2012 ---

iPod2Pitch

iPod3Pitch

iPod1Magnitude

iPod2Magnitude

iPod3Magnitude

Social/Gestural Analysis Module Details

○ centroidXPosition: the current X coordinate of the centroid. Updated only if all three
people are `alive’

○ centroidYPosition: the current Y coordinate of the centroid. Updated only if all three
people are `alive’

○ distanceBetween1and2: the distance between persons 1 and 2.

○ distanceBetween1andCentroid: the current distance between person 1 and the last
calculated centroid position

○ distanceBetween2and3: the distance between persons 2 and 3.

○ distanceBetween2andCentroid: the current distance between person 1 and the last
calculated centroid position

○ distanceBetween3and1: the distance between persons 3 and 1.

○ distanceBetween3andCentroid: the current distance between person 1 and the last
calculated centroid position

○ everybodyIsAlive: a boolean which is high if all three people are `alive’, low otherwise.

○ averageDistanceToCentroid: the average distance of all three people to the current
centroid. Updated only if all three people are `alive’

○ deltaIPod1: the current rate of change of iPod1’s total acceleration magnitude.

○ deltaIPod2: the current rate of change of iPod2’s total acceleration magnitude.

○ deltaIPod3: the current rate of change of iPod3’s total acceleration magnitude.

○ crossCorrelationDIFFERENCE: the current cross-correlation between all three people.
this value is calculated by looking at the difference of the cross-correlation values
between each of the player combinations

○ crossCorrelationSUM: the current cross-correlation between all three people. this value
is calculated by looking at the sum of the cross-correlation values between each of the
player combinations

○ iPod1Roll: iPod1’s roll

○ iPod2Roll: iPod2’s roll

○ iPod3Roll: iPod3’s roll

○ iPod1Pitch: iPod1’s pitch [angle, not ‘frequency’]

6

 of 12

--- Mobile Music Source Documentation: March 2012 ---

○ iPod1Pitch: iPod2’s pitch [angle, not ‘frequency’]

○ iPod1Pitch: iPod3’s pitch [angle, not ‘frequency’]

○ iPod1Magnitude: iPod1’s total magnitude of acceleration on its 3 axes

○ iPod2Magnitude: iPod2’s total magnitude of acceleration on its 3 axes

○ iPod3Magnitude: iPod3’s total magnitude of acceleration on its 3 axes

7

 of 12

--- Mobile Music Source Documentation: March 2012 ---

Synthesizer Module
all messages are sent on the #SYNTHESIZER `send channel’.

EXACT VARIABLE NAME RANGE/UNIT DEPENDENCIES

slowMetroRate >20 [ms] -

fastMetroRate >10 [ms] -

masterFrequency [Hz] -

minMasterFrequency [Hz] SIMpL

maxMasterFrequency [Hz] SIMpL

masterFrequencyScale [Hz] SIMpL

stepSize n/a -

vibratoRate [Hz] -

minVibratoRate [Hz] SIMpL

maxVibratoRate [Hz] SIMpL

vibratoRateScale [Hz] SIMpL

vibratoSize 0-1 [float] -

randomFrequencyMagnitude 0-1[float] -

randomFrequencySpeedHighOrLow bool fastMetroRate, slowMetroRate

masterAmplitude 0-1[float] amplitudeResponseCurve

amplitudeResponseCurve 0-1[float] -

curvedOrLinearADSR bool amplitudeResponseCurve

noteOnOff 0-1[float] -

oscillatorPreset 0-14[int] -

noiseLevel 0-1[float] masterAmplitude [adsr]

reverbMix 0-1[float] -

8

 of 12

--- Mobile Music Source Documentation: March 2012 ---

reverbPreOrPostMasterAmplitude bool -

ADSRattack >0[ms] -

ADSRdecay >0[ms] -

ADSRrelease >0[ms] -

grainread 0-1[float]

_grainspeed 0-12[int]

grainspeedspread 0-15[int]

grainmultiply 0-12[int]

9

 of 12

--- Mobile Music Source Documentation: March 2012 ---

Synthesizer Module Module details

○ slowMetroRate : sets the speed of the slow control metro in milliseconds, this is used in
the timing of random events such as the randomFrequencyMagnitude parameter

○ fastMetroRate : sets the speed of the fast control metro in milliseconds, this is used in

the timing of random events such as the randomFrequencyMagnitude parameter

○ masterFrequency: sets the current frequency of the fundamental in hertz.

○ minMasterFrequency: sets the maxi frequency for when masterFrequency is mapped
to a continuously changing sensor value. - default value = 20Hz

○ maxMasterFrequency: sets the maximum frequency for when masterFrequency is

mapped to a continuously changing sensor value. - default value = 20 000 Hz

○ masterFrequencyScale: determines whether a logarithmic or linear frequency scale
is used when masterFrequency is mapped to a continuously changing sensor - default
setting is Logarithmic. Bool 0 = linear Bool 1 = Log.

○ stepSize : `quantizes’ the masterFrequency parameter into discrete steps, smaller

values result in smaller steps. This parameter is especially sensitive to small changes in
value <1.

○ vibratoRate : sets the rate of vibrato in Hz. Does not have upper limit, making AM-like

modulations possible.

○ minVibratoRate: sets the minimum frequency for when vibratorRate is mapped to a
continuously changing sensor value. - default value = 0Hz

○ maxVibratoRate: sets the maximum frequency for when vibratoRate is mapped to a

continuously changing sensor value. - default value = 1 000 Hz

○ vibratoRateScale: determines whether a logarithmic or linear frequency scale is used
when vibratoRate is mapped to a continuously changing sensor - default setting is
Linear. BOOL 0 = linear BOOL 1 = Log.

○ vibratoSize : sets the vibrato size. limited to a float between 0 and 1.

○ randomFrequencyMagnitude : sets the random frequency fluctuation size.Can be

used to create more interesting/realistic vibrato with small values. Limited to a float
between 0 and 1.

○ randomFrequencySpeedHighOrLow : A boolean parameter which sets the

randomFrequencyMagnitude’s refresh rate to either that of the slowMetroRate or
fastMetroRate’s.

10
 of 12

--- Mobile Music Source Documentation: March 2012 ---

○ masterAmplitude : sets the master amplitude at input before the

amplitudeResponseCurve. Limited to 0-1f. This parameter also adjusts the ADSR
envelope during the sustain phase.

○ amplitudeResponseCurve: sets the response mapping curve, limited to 0-1f. a value of

0.5 results in a linear mapping with gain of one.

○ curvedOrLinearADSR: accepts a boolean to switch between a quartic and linear ADSR
envelope.

○ ADSRattack: attack duration for envelope in ms. this sets the time taken to reach peak

amplitude of the envelope, whose value is set with the noteOnOff method.

○ ADSRdecay: decay duration of envelope

○ ADSRrelease: release duration of envelope

○ noteOnOff : plays note through the ADSR. Float [>0 - 1f] starts note at specified peak
amplitude, sending a zero [0] triggers release.

○ oscillatorPreset: preset waveform, 0 to 14.

○ noiseLevel: set noise generator level between 0 and 1f. constrained by the main ADSR

currently, though it may be given its own envelope in future updates.

○ reverbMix: float [0-1f] specifies wet/dry mix of reverb

○ reverbPreOrPostMasterAmplitude: boolean inserts reverb effect pre or post
masterAmplitude.

Kinect Management
Output Message Structure

<UserID (int)> < Xcoord (float 0-1)> < Zcoord (float 0-1)>

11
 of 12

--- Mobile Music Source Documentation: March 2012 ---

< Xcoord (float 0-1)> and < Zcoord (float 0-1)> values will be used to calculate the overall
distance

<UserID (int)> and <AliveOrNot (0 or 1)> will be used to limit the amount of Kinect user ID
numbers. Kinect Management will take care about the new_user - lost_user- re_enter_user and
exit_user features.

12
 of 12

